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Abstract. The inverse analysis was used to estimate the fire carbon emission in Equatorial Asia induced by the big El Niño in 

2015. This inverse analysis is unique because it extensively used high-precision atmospheric mole fraction data of carbon 

dioxide (CO2) from the commercial aircraft observation project. By comparisons with independent shipboard observations, 

especially carbon monoxide (CO) data, the validity of the estimated fire-induced carbon emission was elucidated. The best 

estimate, which used both aircraft and shipboard CO2 observations, indicated 273 Tg C for fire emission during September–15 

October 2015. This two-month-long emission accounts for 75% of the annual total fire emission and 45% of the annual total 

net carbon flux within the region, indicating that fire emission is a dominant driving force of interannual variations of carbon 

fluxes in Equatorial Asia. Several sensitivity experiments demonstrated that aircraft observations could measure fire signals, 

though they showed a certain degree of sensitivity to prior fire-emission data. The inversions coherently estimated smaller fire 

emissions than the priors, partially because of the small contribution of peatland fires, indicated by enhancement ratios of CO 20 

and CO2 observed by the ship. In the future warmer climate condition, Equatorial Asia would experience more severe droughts 

and have risks for releasing a large amount of carbon into the atmosphere. Therefore, the continuation of aircraft and shipboard 

observations is fruitful for reliable monitoring of carbon fluxes in Equatorial Asia. 

1 Introduction 

Equatorial Asia, which includes Indonesia, Malaysia, Papua New Guinea and surrounding areas (Fig. 1) has experienced 25 

extensive biomass burnings, especially during drought conditions induced by El Niño and the Indian Ocean dipole (Field et 

al., 2009). Those biomass burnings have emitted a significant amount of carbon, mainly in the form of carbon dioxide (CO2), 

into the atmosphere (Page et al., 2002; Patra et al., 2005; van der Werf et al., 2008). Furthermore, those fire-induced carbon 

emissions in Equatorial Asia came from peatland, which has a remarkably high carbon density. Since the peatland in Equatorial 

Asia accounts for a significant portion of the global peatland (Page et al., 2011), the region has a distinct role in the global 30 

carbon cycle despite its small terrestrial coverage. 
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In 2015, the extreme El Niño, accompanied by a positive anomaly of the Indian Ocean dipole mode, induced severe 

drought and devastating biomass burnings in Equatorial Asia. This El Niño was the biggest in the last 30 years, rivalling the 

well-known major El Niño in 1997/1998 (L’Heureux et al., 2016; Santoso et al., 2017). Page et al. (2002) estimated that the 

biomass burning in 1997 emitted a massive amount of carbon into the atmosphere, ranging between 810 and 2570 Tg C. 35 

Compared to 1997, various observations were available in 2015, and several studies used those observations to 

estimate the fire-induced carbon emissions. Field et al. (2016) reported that the annual total carbon emission induced by the 

fires in 2015 was 380 Tg C, which was based on the Global Fire Emissions Database version 4s (GFED4s: Mu et al., 2011; 

Randerson et al., 2012; Giglio et al., 2013; van der Werf et al., 2017). The GFED4s data are derived from active fire data from 

the Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the Terra and Aqua satellites. Huijnen et al. (2016) 40 

estimated the emission to be 289 Tg C by combining total column carbon monoxide (CO) data from the satellite-onboard 

instrument of Measurements of Pollution in the Troposphere (MOPITT) with emission factors estimated from local 

measurements of smoke. In their estimate, the fire-induced CO emission data from the Global Fire Assimilation System (GFAS 

v1.2: Kaiser et al., 2012) were modified to be consistent with the MOPITT CO observations, resulting in a downward shift 

from the original estimate of GFAS v1.2. Yin et al. (2016) also used the column CO data from MOPITT for estimating the 45 

carbon emission in Equatorial Asia. They used multi-tracer (CO, methane and formaldehyde) inverse analysis data (Yin et al. 

2015) and estimated a fire-emitted CO of 122 Tg CO for 2015. With a prescribed ratio of the emission factors between total 

carbon and CO, this number leads to 510 Tg C for the total carbon emissions. 

The total carbon emission estimates of the above studies were obtained from the fire-related data of MODIS and 

atmospheric CO mole fractions of MOPITT and not from observations of atmospheric CO2, which is the major constituent of 50 

emitted carbon. Heymann et al. (2017) first used atmospheric CO2 mole fraction data to estimate the fire-induced carbon 

emission in Equatorial Asia for 2015. They used the column-averaged dry-air mole fraction of CO2 from the Orbiting Carbon 

Observatory-2 satellite (Crisp et al., 2008, 2015) and obtained a CO2 emission estimate of 748 Mt CO2 (equivalent to 204 Tg 

C) from July to November 2015, which covers the beginning and end of the fire season. Their estimate was 35% and 30% 

smaller than the MODIS-based emission estimates of GFED4s and GFAS v1.2, respectively. This lower estimate is more 55 

consistent with the estimate of Huijnen et al. (2016) than that of Yin et al. (2015). 

Thus, the estimates of the fire-induced carbon emission in Equatorial Asia for 2015 are still uncertain, though they 

are consistently much smaller than that for 1997. As discussed by Field et al. (2009, 2016) and Yin et al. (2016), a nonlinear 

sensitivity of the fire emission to the climate conditions contributed to the notable discrepancy of the fire-emission amount 

between 1997 and 2015. However, the underlying mechanisms are unclear, and further investigation and a more accurate 60 

emission estimate are required. Importantly, the previous studies mainly relied on satellite data of atmospheric CO2 or CO. 

These estimates have possible errors because satellite data are not well retrieved when there are smoke or clouds. Heavy smoke 

occurred from the fires in 2015 (Field et al., 2016). Furthermore, cumulus clouds reside over Equatorial Asia at high 

probability, although convective activity decreases during the dry season. 
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In this study, we estimated carbon emissions in Equatorial Asia for 2015 using in situ atmospheric observations by 65 

aircraft and ship. The observational data were obtained from the commercial aircraft observation project of Comprehensive 

Observation Network for TRace gases by AIrLiner (CONTRAIL: Machida et al., 2008) and the National Institute for 

Environmental Studies (NIES) Volunteer Observing Ship (VOS) Programme (Tohjima et al., 2005; Terao et al., 2011; Nakaoka 

et al., 2013; Nara et al., 2011, 2014, 2017). Because of in situ measurements, the observational data provide much higher 

accuracy than the satellite observations used in previous studies. The moderate distance of the observational locations from 70 

the source areas (i.e., in the free troposphere or offshore) should ensure enough spatial representativeness of the observations 

in the inverse analysis. Given the sparse ground-based observations in Equatorial Asia, these programmes provide valuable 

opportunities to investigate the fire-induced emissions in the region. The long-term aircraft observation (the predecessor of 

CONTRAIL) observed CO2 and CO mole fraction variations associated with El Niño over the western Pacific since 1993 

(Matsueda et al., 2002, 2019). Its occasional observation flight to Singapore (Matsueda and Inoue, 1999) and a campaign flight 75 

over Australia and Indonesia (Sawa et al., 1999) captured pronounced elevations of CO from the Equatorial fires in 1997. 

Furthermore, Nara et al. (2017) observed prominent CO2 and CO enhancements from the peatland fires in Equatorial Asia in 

2013 by NIES VOS. 

To link the atmospheric observations to surface carbon fluxes, we performed an inverse analysis of atmospheric CO2 

using the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) (formerly NICAM-TM 4D-Var: Niwa et 80 

al., 2017a, 2017b). The inversion system uses the Nonhydrostatic Icosahedral Atmospheric Model (NICAM: Tomita and Satoh, 

2004; Satoh et al., 2008, 2014)-based transport model (NICAM-TM: Niwa et al., 2011b). Using the same atmospheric transport 

model, Niwa et al. (2012) performed a CO2 inverse analysis and demonstrated a strong constraint of the CONTRAIL data for 

Equatorial Asia. In this study, we estimated surface fluxes at a higher resolution using a more sophisticated inversion method 

than that of Niwa et al. (2012), namely the four-dimensional variational (4D-Var) method (Niwa et al., 2017a). The 4D-Var 85 

estimates fluxes at a model grid-resolution to address flux signals from spatially limited phenomena such as biomass burning. 

We newly implemented CO into the inverse system to evaluate combustion sources. In our inverse analysis, we predominantly 

used atmospheric CO2 observations from CONTRAIL and evaluated the inversion results using independent CO2 and CO 

observations from NIES VOS. Finally, we performed an inverse analysis using both the CONTRAIL and NIES VOS CO2 

observations to enhance the reliability of the inverse analysis. 90 
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Figure 1: Locations of the observations obtained by CONTRAIL (magenta) and NIES VOS (blue) for Nov 2014–Jan 2016. Pentagons and 
hexagons in grey denote the icosahedral grids of NICAM (the grid interval is ~112 km), those filled in orange indicate Equatorial Asia, the 
target region of this study. 95 

 

2 Methods 

2.1 Observations 

2.1.1 CONTRAIL 

The CONTRAIL data were obtained from in situ CO2 measurements by Continuous CO2 Measurement Equipment (CME), 100 

which is installed onboard the Boeing 777-200ER and -300ER of Japan Airlines (Machida et al., 2008; Sawa et al., 2012; 

Umezawa et al., 2018). For the analysis period from November 2014 to January 2016, the number of CONTRAIL-CME data 

exceeds 1.3 million, comprising 10-s interval data from ascending/descending sections and 1-min interval data from cruising 

sections. In the analysis, we only used data in the free troposphere, derived by excluding data in the stratosphere and the 

planetary boundary layer identified by thresholds of two potential vorticity units (PVU, 1 PVU = 10−6 m2 s−1 K kg−1) and Ri = 105 

0.25 (Ri is the bulk Richardson number), respectively (Sawa et al., 2008, 2012). This data filtering is needed because the 

signals of surface fluxes being efficiently attenuated in the stratosphere, and lower altitude data could be affected by local 

emissions from a neighbouring city of an airport (Umezawa et al., 2020). After filtering, the number of observations is still as 

large as 1.1 million. In particular, the observational coverage for Equatorial Asia is noteworthy, which is predominantly 

contributed by high-frequency flights between Japan and Singapore. 110 
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2.1.2 NIES VOS programme 

The NIES VOS programme has been conducting atmospheric and surface ocean observations in the Pacific Ocean using 

commercial cargo vessels (Tohjima et al., 2005; Terao et al., 2011; Nakaoka et al., 2013; Nara et al., 2011, 2014, 2017). The 

observation network ranges from Japan to North America, Oceania (Australia and New Zealand), and Southeast and Equatorial 

Asia. In 2015, the motor vessel named Fujitrans World (owned by the Kagoshima Senpaku Kaisha, Ltd. Kagoshima, Japan) 115 

was used for observations in Southeast and Equatorial Asia. Onboard the ship, an in situ measurement system continuously 

observed atmospheric mole fractions of greenhouse gases and other related atmospheric species (Nara et al., 2017). In this 

study, in addition to CO2, atmospheric CO data were used for the proxy of fire-induced emissions. The ship normally travels 

once a month, but for 2015, observational data were obtained in January and from May to November. It takes approximately 

two weeks to travel around Southeast and Equatorial Asia. In this study, we used 1-h interval data that passed careful quality 120 

control. Using ancillary data of the cruising speed and mole fractions of related species (e.g., ozone), the quality control 

excluded mole fraction data of CO2 and CO that were judged as the ship’s exhaust and contaminated by local ports. 

2.2 Inverse analysis 

2.2.1 Inversion system and transport model 

Similar to previous inversions (e.g., Baker et al., 2006; Chevallier et al., 2010; Rödenbeck, 2005), the inverse analysis of this 125 

study is based on Bayesian estimation (e.g., Rayner et al., 1996; Enting, 2002). The cost function is defined as 

𝐽(𝛿𝒙) = !
"
𝛿𝒙#𝐁$!𝛿𝒙 + !

"
(𝑀(𝒙% + 𝛿𝒙) − 𝒚)#𝐑$!(𝑀(𝒙% + 𝛿𝒙) − 𝒚),     (1) 

where 𝛿𝒙 is the control vector, including parameters to be optimised, y represents the vector of observations, and x0 denotes 

the basic model state of the parameters. The matrices B and R are the prescribed error covariance for 𝛿𝒙 and the model-

observation mismatch, respectively. The operator M(.) describes the forward simulation, including linear spatiotemporal 130 

interpolation to each observational location/time. In this inverse analysis, x0 and 𝛿𝒙 comprise prescribed surface CO2 flux data 

and deviation from them, respectively, and the operator M(.) represents the atmospheric transport. Atmospheric mole fraction 

observations of CO2 are input to the vector y. 

In this study, we used the 4D-Var method to obtain an optimal vector 𝛿𝐱 that minimises the cost function. In the 

method, an optimal parameter vector is sought by iterative calculations using the gradient of the cost function, 135 

∇𝐽&𝒙 = 𝐁$!𝛿𝒙 +𝐌#𝐑$!(𝑀(𝒙% + 𝛿𝒙) − 𝒚),        (2) 

where MT is the transpose of the tangent linear operator M (in this study, 𝐌𝛿𝒙 ≈ 𝑀(𝛿𝒙) because of the linearity of the 

problem). The MT calculation requires an adjoint model. 

The inversion system NISMON is specifically designed for the inverse analysis of an atmospheric constituent (Niwa 

et al., 2017a, 2017b). In the system, the forward model of NICAM-TM simulates atmospheric mole fractions from given 140 

surface fluxes, and its adjoint model calculates the sensitivities of fluxes against atmospheric mole fractions (Niwa et al., 
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2017b). Specifically, the continuous adjoint model was chosen for the adjoint calculation, assuring monotonicity of tracer 

concentrations and sensitivities at the expense of minor nonlinearity (Niwa et al., 2017b). The optimisation calculation uses 

the quasi-Newton algorithm of the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar: Fujii and 

Kamachi, 2003; Fujii, 2005; Niwa et al., 2017a). 145 

The atmospheric transport model NICAM-TM adopts an icosahedral grid system with hexagonal or pentagon-shaped 

grids (Fig. 1) that are produced by the recursive division of an icosahedron. All the model simulations were performed at a 

horizontal resolution of glevel-6 (n of glevel-n denotes the number of divisions of an icosahedron, representing the level of the 

model horizontal resolution). The averaged grid interval of glevel-6 is 112 km, sufficiently resolving the major archipelagos 

in Equatorial Asia (Fig. 1). For forward and adjoint simulations of atmospheric transport, archived meteorological data drive 150 

NICAM-TM, which is an off-line calculation. The meteorological data were prepared in advance from the simulation of the 

parent model NICAM, whose wind fields are nudged towards Japanese 55-year Reanalysis data (JRA-55: Kobayashi et al., 

2015; Harada et al., 2016) (see Niwa et al., 2017b for a detailed description of the archived meteorological data). Other model 

settings can be found in Niwa et al. (2017b). 

2.2.2 Implementation of CO 155 

In this study, we newly implemented a CO function in the above inversion system to use CO as a proxy of fire-induced 

emissions. It also considers oxidation from CO to CO2, which could have measurable effects on CO2 observations near fires. 

Figure 2 shows a schematic diagram for the forward and adjoint simulations of NICAM-TM, including CO. This CO function 

considers only the chemical reaction with hydroxyl radicals (OH). The OH fields are given as input data and, hence, the model 

does not have nonlinear chemical reactions, retaining the linearity, which is assumed in the inverse analysis theory. 160 

Furthermore, the oxidation from methane (CH4) to CO with OH is also considered. For simplicity, however, the atmospheric 

mole fraction of CH4 was set at a globally constant value of 1844 ppb (= 10−9 mol−1), which was derived from the global annual 

mean mole fraction for 2015, reported by the World Data Center for Greenhouse Gases (WDCGG: WMO, 2018). The 

atmospheric three-dimensional data of OH were derived from the TransCom-CH4 project (Patra et al., 2011). In the model, the 

contribution of oxidation from biogenic volatile organic compounds (BVOCs) to CO is given as emissions from the earth’s 165 

surface. Note that we did not input CO observations to the inverse analysis. The dominant part of the observations was from 

the in situ CONTRAIL measurements, which did not have simultaneous CO data available. In the inversion, the CO flux in 

the model was modified along with the biomass burning emission of CO2, as described in the next section. 

2.2.3 Flux model 

As described in Fig. 2, we introduced scaling factors to surface fluxes, which is another updated feature of the inversion system 170 

from Niwa et al. (2017a). The surface CO2 flux input to the model, 𝑓()!, is described as 

𝑓()!(𝑥, 𝑡) = 51 + ∆𝑎*+,(𝑥, 𝑡)9𝑓*+,(𝑥, 𝑡) − 51 + ∆𝑎-..(𝑥, 𝑡)9𝑓-..(𝑥, 𝑡)     
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+51 + ∆𝑎/0(𝑥, 𝑡)9𝑓/0(𝑥, 𝑡) +51 + ∆𝑎*123(𝑥, 𝑡)9𝑓*123(𝑥, 𝑡)      

+𝑓+45(𝑥, 𝑡) + ∆𝑓+45(𝑥, 𝑡),         (3) 

where x and t indicate flux location and time, and f represents prescribed flux data, whose subscripts of fos, GPP, RE, fire and 175 

ocn denote flux components of fossil fuel combustion and cement production, Gross Primary Production (GPP) and respiration 

(RE) of terrestrial biosphere, biomass burning and ocean, respectively. Note that a positive value indicates a flux towards the 

atmosphere. Each flux component data could have different temporal resolutions (e.g., monthly, daily), and flux values are 

linearly interpolated in time to each model time step. Datasets used for each flux component are described in the following 

section. Their coefficients of Δafos, ΔaGPP, ΔaRE and Δafire are modification scaling factors for corresponding flux components, 180 

of which the values could be varied at each model grid. We did not apply the scaling factor to the ocean flux but introduced 

the deviation of the prescribed flux Δfocn because the ocean flux has both negative and positive values and its spatiotemporal 

flux phase could not be modified when introducing a scaling factor. Note that the other flux components should have all 

positive values. The phases of spatiotemporal variations of terrestrial biosphere flux (e.g., seasonal cycle) could be modified 

because GPP and RE are separately optimised. The above modification scaling factors and Δfocn were the parameters to be 185 

optimised in the inverse analysis. 

For the surface CO flux, we considered fossil fuel, BVOCs and biomass burning emissions. For the biomass burning 

emissions, we imposed the common scaling factor with that of CO2. Therefore, in the inversion, the biomass burning emission 

of CO was modified along with that of CO2. The modification of the biomass burning emission could also be made by signals 

transported via atmospheric CO that should have oxidised to CO2 (Fig. 2). 190 

In Eq. (3), the temporal resolution of a flux-scaling factor could be different from that of its corresponding flux and 

be different by regions (Table 1). In this study, we set the daily temporal resolution for the scaling factors of GPP, RE and 

biomass burning emissions in Equatorial Asia so that the inversion could exploit the full information of those surface fluxes 

from the observations. For the rest of the region, we set monthly temporal resolutions. For the scaling factor of fossil fuel 

emissions, we set an annual temporal resolution for Equatorial Asia, and we did not optimise the flux for the rest of the region, 195 

i.e., the modification factor was set to 0. We set the monthly temporal resolution for the deviation of the ocean flux. 
 
Table 1: Temporal resolution and standard error and error correlation of each flux component, which was separately configured for 
Equatorial Asia and the rest of the world. Note that the ocean flux was optimised by its absolute value and the others by their scaling factors; 
therefore, the monthly standard deviation (SD) of the long-term data was used for the ocean flux error and ratios were used for the other flux 200 
errors. 

Flux 
component 

Temporal resolution  Standard error  Error correlation (space/time) 

Eq. Asia Rest  Eq. Asia Rest  Eq. Asia Rest 

fos Annual N/A  10% N/A  None/None N/A 
GPP, RE Daily Monthly  40% 10%  None/3 day 1000 km/None 
fire Daily Monthly  80% 100%  None/3 day None/None 
ocn N/A Monthly  N/A SD  N/A 3000 km 
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Figure 2: Schematic diagram of the CO2–CO forward/adjoint calculations in NICAM-TM 205 

 

2.2.4 Error covariance matrices 

As in the case of the different flux temporal resolutions, we constructed the flux error covariance matrix B for Equatorial Asia 

and the rest of the world separately. Table 1 summarises the standard errors and error correlations that were introduced into 

the diagonal and off-diagonal elements of B, respectively. For GPP and RE, we assume 40% error for daily fluxes in Equatorial 210 

Asia and 10% for monthly fluxes in the rest of the world, which means 0.16 and 0.01 for the diagonal elements of B. The 

higher standard error for Equatorial Asia allows observations to modify surface fluxes sufficiently. Nevertheless, a 3-day scale 

temporal error correlation was introduced to stabilise flux estimates. The smaller standard error for the rest of the world had 

to constrain the surface flux to the prior because we did not use enough observations to cover the globe. Furthermore, for the 

stabilisation, the spatial error correlation with the 1000 km scale length was introduced. The above error correlations were 215 

defined by the Gaussian function (Niwa et al., 2017a). Similarly, the errors for fossil fuel and fire emissions were introduced, 

but without error correlations. For the monthly ocean flux errors, we used the standard deviation of the long-term data (1990–

2016) and introduced the spatial error correlation of 3000 km. Table 1 shows each parameter. 

2.2.5 Prescribed flux dataset 

For ffos and focn in Eq. (3), we used monthly mean data of fossil fuel and cement production emission from the Carbon Dioxide 220 

Information Analysis Center (CDIAC) (Andres et al., 2016) and of air-sea CO2 flux from the Japan Meteorological Agency 
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(Takatani et al. 2014; Iida et al., 2015), respectively. For fGPP and fRE, we used 3-hourly data for resolving distinct diurnal 

cycles of terrestrial biosphere flux. These fGPP and fRE were originally based on monthly mean data from the Carnegie-Ames-

Stanford Approach (CASA) model (Randerson et al., 1997), but were modified according to the inversion of Niwa et al. (2012). 

They were further downscaled in time to 3-hourly with 2 m temperature and downward shortwave radiation data of JRA-55 225 

using Olsen and Randerson’s (2004) method. 

In the inversion of Niwa et al. (2012), the classical low-resolution inversion method (e.g., Enting, 2002) was used, in 

which the global terrestrial area was divided into 31 regions, and the scaling factors for those regions were optimised. 

Furthermore, the inversion used both surface and CONTRAIL data for 2006–2008, and the mean flux data of those three years 

were used in this study. Therefore, such an integrated flux could produce consistent atmospheric mole factions with the 230 

observations from the surface to the upper troposphere, although some discrepancies could arise because of the different 

analysis period. In this study, those discrepancies were modified using the consistent year data of CONTRAIL and further flux 

information was exploited because of using the 4D-Var high-resolution (model grid level) inversion, with a specific focus on 

Equatorial Asia. 

For the biomass burning flux of ffire, we used four datasets and performed independent inversions to evaluate 235 

sensitivities to the biomass burning data (Table 2). The first is the mean of the GFED4s and GFAS v1.2 (noted as GG). The 

second and third ones are from GFED4s (GD) and GFAS v1.2 (GS), respectively. The fourth one is made by excluding 

emissions in Equatorial Asia from GG (NO). For NO, we replaced the biomass burning term of Eq. (3) by 

50 + ∆𝑎*123(𝑥, 𝑡)9𝑓*123(𝑥, 𝑡) in Equatorial Asia, where ffire is the same as GG. 

For CO, the same biomass burning datasets from GFED4s and GFAS v1.2 were used. The rest of the CO fluxes from 240 

fossil fuel use and oxidation of BVOCs were derived from the Emission Database for Global Atmospheric Research (EDGAR) 

version 4.3.2 (Janssens-Maenhout et al., 2019) and the process-based model of terrestrial ecosystems, the Vegetation 

Integrative SImulator for Trace gases (VISIT: Ito and Inatomi, 2012; Ito, 2019), respectively. For EDGAR v4.3.2, we used 

emission data of 2012 (the latest data available) for the simulation of 2015. 

 245 
Table 2: Observation and prior fire-emission data for each inverse analysis experiment 

Experiment name Observation Fire prior 

C_GG CONTRAIL (GFAS + GFED)/2 
C_GD CONTRAIL GFED 
C_GS CONTRAIL GFAS 
C_NO CONTRAIL No fire in Equatorial Asia 
CV_GG CONTRAIL, VOS (GFAS + GFED)/2 
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2.2.6 Initial mole fraction field and analysis period 

In addition to the flux-scaling factors, the model parameter vector includes the global offset of atmospheric mole fractions. 250 

Therefore, 𝛿𝒙 of Eqs. (1) and (2) is constructed as 

𝛿𝒙 = (∆𝒂, ∆𝒇+45, ∆𝑐)#,           (4) 

where ∆𝒂 and ∆focn represent all the modification scaling factors and ocean flux deviations of Eq. (3), respectively, and ∆𝑐 

denotes the modification to the global offset. Thus, its corresponding basic state vector x0 is described as 𝒙% =

(1,… ,1, 𝒇+45, 0)#. Note that the forward model calculation started from a reasonable spatial gradient, which was prepared in 255 

advance by a spin-up calculation. At the beginning of the 4D-Var iterative calculation, all the elements of 𝛿𝐱 were set to zero 

as the initial estimates. 

The target period for this study is the whole year of 2015. However, in the inverse calculation, two extra months were 

added before the target period to attenuate the errors in the initial mole fraction fields before the beginning of 2015, which was 

inevitable because of the global unique parameter described above (∆𝑐). Furthermore, one more month was also added after 260 

the target period to well constrain fluxes at the end of 2015. Therefore, the inverse calculation period consists of 15 months 

from November 2014 to January 2016. 

2.3 Notation of sensitivity tests 

As described in 2.2.5, we performed inversion analyses with four biomass burning datasets (GG, GD, GS and NO). We only 

used the CONTRAIL data, but with GG, we additionally performed an inversion using the NIES VOS data and CONTRAIL 265 

to leverage all available observations, denoting C_ and CV_ as prefixes, respectively. Thus, we have five inversion results 

(C_GG, C_GD, C_GS, C_NO and CV_GG) (Table 2). Note that although they used different biomass burning data, prior flux 

errors for biomass burning (Table 1) were commonly used. It is true even in C_NO whose practical prior uncertainty in 

Equatorial Asia is 80% of GG. 

3 Results 270 

In this section, we first describe spatiotemporal features of the CONTRAIL and NIES VOS observational data with 

supplemental model analyses. Then, we show the inversion results and demonstrate their validity by comparing posterior mole 

fractions of CO and CO2 with the NIES VOS data. 

3.1 Observational features 

As shown in Fig. 3, the CONTRAIL aircraft frequently flew to Singapore 209 times during 2015. These high-frequency 275 

observations manifested a small but distinct seasonal cycle of CO2 mole fractions around Equatorial Asia, with double peaks 

in April–May and December, and a minimum during June–October, depending on altitudes and latitudes. Furthermore, the 

CONTRAIL aircraft frequently observed additional highly elevated mole fractions below 3 km altitude over Singapore (Fig. 
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3a, lower panel), which could be attributable to local or regional emissions in Equatorial Asia. The model with the prior flux 

data produced similar mole fraction elevations; however, their timing and magnitudes were sometimes different from the 280 

observations (Fig. 3b). A further model analysis with prior biomass burning data suggested that fire contributions to the 

observed mole fraction elevations were limited mostly within the latter period of the dry season from mid-August to the 

beginning of November (Fig. 4b). In the other seasons, the model showed almost no contributions from fire emissions (not 

shown). In particular, the model showed a distinct fire contribution at the end of September, which elevated mole fractions up 

to the upper troposphere by ~4 ppm. In the observations, although similar mole fraction elevations are found in the upper 285 

troposphere, its magnitude is smaller (~2 ppm). Furthermore, the observation shows a slightly later peak that lasted until the 

beginning of October (Fig. 4a). After that, the observations also captured elevated mole fraction events from mid-October 

onward. However, the prior model estimate showed smaller fire contributions in October than in September (Fig. 4b), although 

the simulated total CO2 mole fractions were comparable to the observations (Fig. 3b), indicating that non-fire emissions (e.g., 

from terrestrial biosphere respiration and fossil fuel emission) had a certain level of contribution during this period. 290 

 
Figure 3: CO2 mole fractions in the free troposphere around Equatorial Asia (note that data in the boundary layer and stratosphere are 
excluded (see the main text)) observed by CONTRAIL (a) and their corresponding model values from prior (GG) (b) and posterior (C_GG) 
fluxes (c). Each upper panel presents a time-latitude cross-section from cruising mode data (~11 km above sea level) within the longitude 
range of 90°–130°E, and the lower one shows a time-altitude cross-section from ascending/descending data over Singapore. Note that the 295 
data in the upper panels are not only from the Singapore flights but from all flights within the range. For visualisation, data are all 5-day 
running mean. Note also that an additional offset of 1.93 ppm is added to prior mole fractions so that the resulting global offset equals the 
posterior one. On the right-hand side, correlation coefficients and root-mean-square difference (RMSD) (ppm) between the simulated and 
observed mole fractions are noted for each time-latitude and time-altitude cross-section. 
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 300 

 
Figure 4: The same as Fig. 3, but for 15 August–15 November. The model simulations here show only fire contributions. 

 

Figure 5 shows CO2 and CO mole fractions observed along the track of the NIES VOS around Equatorial Asia. The 

NIES VOS observations in both September and October 2015 captured coincident elevations of CO2 and CO mole fractions 305 

in the east of the Malay Peninsula and west of Borneo. By performing a transport simulation of tagged fire-induced CO tracers 

(the fire emission of GG was used here), we found that the fires in Borneo and Sumatra contributed almost every notable mole 

fraction elevation, except for 17 September and 15–16 October, both of which might be contributed by the fossil fuel emission 

in Jakarta city (Fig. 6). As highlighted by the grey shades in Fig. 6, seven of those events contributed by the fires are designated 

by P1, P2,…, P7 in this study. These events will be used for evaluating the inverse analysis, especially for fire-emission 310 

features, as described in Section 3.2.2. Note that mole fraction data during 13–15 September and 11–14 October were excluded 

before the analysis. During these periods, some data were not correctly obtained because the signals were too large and out of 

the measurable range. Furthermore, the NIES VOS ship travelled slowly or stayed around the Malacca Straits, resulting in 

contamination by the ship-self exhaust. 
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 315 
Figure 5: Mole fractions of CO2 (left) and CO (right) along the cruise tracks of NIES VOS for September (upper) and October (lower) 2015. 
Data enclosed by black lines with P# represent designated fire-induced high mole fraction events (see also Fig. 6). 

 

 
Figure 6: Time series of CO mole fractions obtained by the in situ NIES VOS measurement (black) for September (a) and October (b) and 320 
corresponding simulation results by NICAM-TM with prior CO emission data (red). Model simulations only from fire emissions in Sumatra 
and Borneo are also denoted by blue and cyan colours, respectively. Grey shades with P# indicate the fire-induced elevated mole fraction 
events. 
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Figure 7 shows sensitivities of the CONTRAIL and NIES VOS observations against surface CO2 fluxes, i.e., 325 

footprints, for September and October 2015, calculated by the adjoint model of NICAM-TM (Niwa et al., 2017b). The 

CONTRAIL footprints represent sensitivities of observations obtained during ascending or descending flights over Singapore 

(i.e., the data shown in the lower panel of Fig. 4a). For both September and October, the calculated footprints indicate that the 

CONTRAIL observations could provide significant constraints on flux estimates for Equatorial Asia, especially Borneo (Figs. 

7a and b). These widespread footprint features are because the data were obtained in the free troposphere, which is an advantage 330 

of aircraft observations in terms of representativeness. Figure 7 also suggests that the constraint is stronger during October 

than September because the number of data is larger in October (Fig. 3 or Fig. 4). Compared to CONTRAIL, the NIES VOS 

footprints are restricted to the ocean (Figs. 7c and d) because the observations were made within a marine boundary layer. It 

would also be contributed by weak wind fields, which are typical in the tropics. Nevertheless, there are some sensitivities of 

the NIES VOS observations on the coasts of the islands, with which the significantly large fire emissions elevated the mole 335 

fractions of atmospheric CO2 and CO (Figs. 5 and 6). 

 
Figure 7: Sensitivity of surface CO2 flux against the observations (e.g., footprints) of CONTRAIL over Singapore (upper) and NIES VOS 
(lower) for September (left) and October (right) 2015. 

 340 
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3.2 Inversion results 

3.2.1 Posterior fluxes 

In this study, we investigate surface fluxes by the sum of CO2 and CO fluxes, defined as a carbon flux. We do not consider 

CH4 fluxes, although they could contribute some percentage of the total carbon flux (Huijnen et al., 2016). Furthermore, we 

evaluate the carbon flux separately for the total net flux and biomass burning emission. Note that the total net flux includes 345 

terrestrial biosphere fluxes, biomass burnings emissions and fossil fuel emissions. 

Table 3 summarises the total net and fire carbon fluxes of Equatorial Asia estimated by the five sets of inversions. 

The prior biomass burning emissions of GG, GD and GS are consistently 300 Tg C for September–October, which constitutes 

~80% of the annual total fire emission and amounts to more than 80% of the total net flux we prescribed as the prior (355–360 

Tg C) for September–October. By inversion, all experiments, other than C_NO, estimated smaller total net fluxes by ~10% 350 

(304–324 Tg C) than the priors, and they were mostly contributed by the smaller estimates of fire emissions (256–277 Tg C). 

Interestingly, even when prior fire emissions were excluded in Equatorial Asia (C_NO), a significantly large fire emission of 

122 Tg C was retrieved for September–October, indicating that the CONTRAIL data have fire-emission signals. However, the 

estimate is half of the others, indicating some dependency of the inversion on the prior fire emissions. 

 355 

Table 3: Total net flux and fire emission of carbon from Equatorial Asia for September–October 2015. Figure 1 defines the geographical 
region of Equatorial Asia. Note that the total net flux includes terrestrial biosphere fluxes, biomass burnings emissions and fossil fuel 
emissions. Annual flux values for 2015 are also noted in parentheses. The prior fluxes with the four biomass burning emissions are presented, 
as well as the posterior fluxes of the five inversions. 

 Total net flux [Tg C] Fire emission [Tg C] 
Prior (GG) 357 (677) 299 (388) 
Prior (GD) 360 (685) 301 (396) 
Prior (GS) 355 (669) 296 (379) 
Prior (NO) 59 (289) 0 (0) 
C_GG 324 (613) 277 (363) 
C_GD 304 (598) 256 (343) 
C_GS 320 (604) 265 (348) 
C_NO 211 (451) 122 (131) 
CV_GG 322 (608) 273 (362) 

 360 

Figures 8 and 9 show the CO2 flux distributions for September and October, respectively. Here, we present the 

posterior fluxes of C_GG and C_NO only, but those of the other inversions show almost similar distribution features to C_GG. 

In September, C_GG estimated significantly high emissions in southeast Sumatra and south of Borneo, where the fire emission 

dominated in the prior flux (Fig. 8), supporting prior knowledge of biomass burnings. However, the total emission estimate is 
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smaller than the prior by 31 Tg (Fig. 8c). In October, the differences between prior and posterior fluxes of C_GG were 365 

moderate, with a net difference of 2.7 Tg (Fig. 9c). This small change in October indicates that the simulated mole fractions 

from the prior flux were well consistent with the CONTRAIL observations. 

 

 
Figure 8: Prior (a) and posterior (b: C_GG, e: C_NO) surface CO2 flux distributions averaged for September 2015. Difference between prior 370 
and posterior fluxes (c) and prior fire emissions (d) are also shown. 

 

 
Figure 9: Same as Fig. 8, but for October 2015. 

 375 
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As shown in Table 3, even when the fire emission was excluded from the prior, the inversion estimated notable fire 

emissions (C_NO), in both September and October (Figs. 8e and 9e). Furthermore, the locations of the estimated fire emissions 

are well coincident with those of prior fire emissions. They were to some extent guided by the higher prior flux errors that 

were derived from the fire-emission data (the uncertainty was set as 80% of GG), which was confirmed by another sensitivity 

test without prior uncertainty of fire emissions (not shown). Nevertheless, this result confirms that the CONTRAIL data have 380 

information about biomass burning emissions. 

Figure 10 shows temporal variations of the total net carbon flux in Equatorial Asia. Here, the posterior fluxes of 

C_GG and CV_GG are shown (panel a) and the difference from each prior is presented as Δ (panel b). Note that the time series 

of Δ is smoother because Δ is the parameter optimised by the inversion with a 3-day temporal correlation scale. This temporal 

correlation works as a smoother. The differences between the two posterior fluxes are marginal, indicating a limited effect of 385 

adding the NIES VOS data to the CONTRAIL data because the number of CONTRAIL data is overwhelming and the footprint 

of CONTRAIL covers Equatorial Asia much more extensively in space (Fig. 7). Compared to the prior flux, the posterior 

fluxes have a smaller peak at the beginning of September, whereas they show larger peaks from the end of September to the 

beginning of October. In the latter part of October, the prior and posterior fluxes are similar. 

 390 

 
Figure 10: Time series of posterior total net carbon fluxes (a) and their differences from prior (Δ) (b) for 2015. Posterior fluxes of C_GG 
(blue) and CV_GG (red) and their prior flux (grey) are presented. 

 

Figure 11 exhibits temporal variations of fire emissions during the fire season. In Equatorial Asia, although the timings 395 

of the emission peaks presented by GFED and GFAS are coincident with each other, their magnitudes are significantly 
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different. GFED has larger peaks than GFAS in September, whereas it has smaller ones in October (Fig.11a). Generally, the 

posterior fire emissions, except for C_NO, fall within the range of both prior emission estimates. In September, the posterior 

estimates are consistent and their magnitudes are closer to GFAS rather than GFED. In October, however, notable 

discrepancies occur among the posterior emissions, which is contributed by different emission estimates for Sumatra rather 400 

than Borneo according to the breakdown of the posterior estimates (Figs. 11b and c). In October, GFAS has higher emissions 

than GFED on both islands and its degree is more prominent in Sumatra. These different prior fire-emission estimates might 

have contributed to the large discrepancy among posterior estimates. 

 

 405 
Figure 11: Time series of posterior and prior fire carbon emissions over the fire season (mainly, September–October) of 2015. The posterior 
fluxes of C_GG (blue solid), C_GD (orange solid), C_GS (cyan solid), and C_NO (magenta solid) are shown. Prior data of GFED (black 
dotted) and GFAS (grey dotted) are also shown. 

 

As shown in Fig. 7, the CONTRAIL footprint covers Borneo better than Sumatra, and its degree is larger in October 410 

than in September. In practice, however, the constraint on fire emission has a different feature, as seen in the noticeable spread 

of fire-emission estimates in October (Fig. 11c). Note that the spread of estimates, including C_NO, is small in Sumatra at the 

end of September (Fig. 11b). In this period, the observational data and model analysis indicated that strong fire signals reached 

Singapore, although its timing, as suggested by the model, was slightly earlier (Fig. 4b). For this event, the inversion 

successfully optimised the fire emission in Sumatra with strong constraints by the observations, even from the no-fire prior 415 

(C_NO), resulting in the later-shifted peak with the consistent magnitude of 4–5 Tg C dy−1 (Fig. 11b). 
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3.2.2 Posterior mole fractions 

In this section, we evaluate the simulated atmospheric CO2 and CO mole fractions from the posterior fluxes. First, as shown 

in Fig. 3, the posterior mole fractions of CO2 simulated for CONTRAIL have shown much better agreement with the 

observations than the prior ones, demonstrating that the inverse analyses were reasonably well performed. Compared to the 420 

simulation results of the prior fluxes, the posterior mole fractions have greater correlation coefficients and smaller root-mean-

square differences from the observations (see the numbers at the right-hand side of Fig. 3). In the following, we will compare 

the model with the CO2 and CO observations of NIES VOS, which were left independent of the inversions, except for CV_GG. 

As demonstrated by Fig. 2, the posterior CO flux includes the fire emission modified according to the modification of CO2 fire 

emissions. To elucidate carbon fluxes in Equatorial Asia, the NIES VOS data used here are limited in the neighbouring region 425 

(95°–125°E and 10°S–15°N). 

In the comparative analysis of CO2 observations, an additional offset of 1.93 ppm is added to the prior CO2 mole 

fractions so that the resulting global offset becomes equivalent to the posterior ones, i.e., ∆𝒄 of Eq. (4) is 1.93 ppm (note that 

there is almost no difference in the global offset among the five inversions). Because the initial global offset was arbitrarily 

given, the comparison analysis of CO2 should exclude the effect of the improvement in the global offset to better understand 430 

the inversion effects. 

Figure 12 demonstrates how the posterior mole fractions of CO2 and CO were improved from the prior ones. 

Comparing the posterior results with the prior ones, we found better consistency with the NIES VOS observation, which is 

true for both CO2 and CO. Especially, its degree is notable for September; all inversions, except CV_GG, reduced the root-

mean-square difference (RMSD) of CO2 from 2.14–2.62 ppm to 2.05–2.09 ppm, whereas those of CO were reduced from 92–435 

211 ppb to 80–111 ppb. These results indicate the validity of the inversions that used the CONTRAIL CO2 observations. 

Especially, the experiment without the prior fire emission (C_NO) remarkably improved the correlation coefficients of CO2 

and CO for both September and October (in September from 0.43 to 0.56 for CO2 and from 0.34 to 0.81 for CO, whereas in 

October from 0.29 to 0.49 for CO2 and from −0.18 to 0.49 for CO); however, the other inversions, except for CV_GG, did not 

improve the correlation coefficients significantly. In both months, CV_GG showed the best scores for CO2, which is 440 

reasonable because it used the CO2 observations of NIES VOS. Note, however, that CV_GG used only the CO2 observations, 

but not those of CO. Therefore, the RMSD reduction of CO for September by CV_GG (from 136 to 103 ppb) demonstrates 

some improvement in fire emissions. Therefore, it is better to use both the CONTRAIL and NIES VOS observations for flux 

estimations; however, the impact of NIES VOS is limited for the total carbon fluxes in Equatorial Asia (Table 3 and Fig. 10). 

 445 
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Figure 12: Correlation coefficient (upper panels) and root-mean-square-difference (RMSD) (lower panels) between the observed and 
simulated NIES VOS CO2 (left) and CO (right) mole fractions. The NIES VOS data used here are limited within the range of 95°–125°E 
and 10°S–15°N for September (light blue) and October (light green) 2015. The model simulations are derived from each posterior flux 
(C_GG, C_GD, C_GS, C_NO, and CV_GG) (filled bar) and its corresponding prior flux (open bar). To consider the initial global offset 450 
error, we added 1.93 ppm to every prior value so that the prior initial global offset becomes equivalent to the posterior one. 

 

For each elevated mole fraction event defined by Figs. 5 and 6, we calculated an enhancement ratio of ΔCO/ΔCO2 

from the reduced major axis regression, as Nara et al. (2017) did. For all peaks, except P1 and P2, every correlation between 

CO2 and CO variations is statistically significant (p < 0.05) for both the observations and simulations. For P1 and P2, some 455 

simulated results could not have significant correlations; therefore, we combined the two events so that every correlation was 

statistically significant (combining P1 and P2 would be reasonable because the Sumatra fires contributed to both; see Fig. 6). 

The enhancement ratios for those events could provide implications for emission ratios between CO and CO2. Note that the 

simulated ratios are derived from the posterior fluxes, but the overall feature does not change when the prior fluxes are used 

because the fire-emission ratios between CO and CO2 were unchanged by the inversion. Figure 13 depicts the observed and 460 

simulated enhancement ratios and the observed correlation coefficients for each event. The figure shows that the observed 

ratio has a significantly large variation from 0.034 ppb/ppb to 0.169 ppb/ppb. Interestingly, the higher ratios were obtained 

from events that were likely contributed by the Borneo fires (P3, P6 and P7; see also Fig. 6). The model with any posterior 

flux reproduced a pattern similar to the observed one. However, for the events from September to early October (P1 and P2, 

P3 and P4), the model coherently overestimated the enhancement ratios. The model and observations respectively show 0.067–465 

0.104 ppb/ppb and 0.038 ppb/ppb for P1 and P2, 0.139–0.165 ppb/ppb and 0.117 ppb/ppb for P3, and 0.115–0.133 ppb/ppb 

and 0.066 ppb/ppb for P4. In the latter events, the simulated ratios have substantial spreads among the different inversions, 
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especially for P6 (0.080–0.145 ppb/ppb) and P7 (0.123–0.182 ppb/ppb), and the observed ratios are almost at the highest level 

of the simulated spreads. A further discussion is made in the following section. 

 470 

 
Figure 13: Observed and simulated enhancement ratios of ΔCO/ΔCO2 (solid line) and observed correlation coefficients between ΔCO and 
ΔCO2 (grey bar) for each elevated mole fraction event defined by Figs. 5 and 6. The observed enhancement ratios are coloured in black. The 
simulated values were derived from posterior CO and CO2 fluxes of C_GG (magenta), C_GD (red), C_GS (blue), C_NO (green), and 
CV_GG (cyan). 475 

 

4. Discussion 

In this study, we extensively used the aircraft observations from CONTRAIL to constrain carbon fluxes in Equatorial Asia, 

focusing on the devastating fire event in 2015. With the help of NIES VOS observations, especially its CO data, we have 

demonstrated the validity of our inverse analysis. The estimates of biomass burning emissions are moderately smaller than the 480 

prescribed datasets of GFED and GFAS. Our conceivably best estimate of CV_GG, which used both the CONTRAIL and 

NIES VOS data, amounts to 273 Tg C and 362 Tg C for fire-induced carbon emissions during September–October and all 

months in 2015, respectively. These numbers are in better agreement with previous top-down estimates of Huijnen et al. (2016) 

(227 Tg C for September–October, and 289 Tg C for the annual total) and Heymann al. (2017) (204 Tg C for July–November) 

than that of Yin et al. (2016) (510 Tg C for the annual total). Furthermore, the fire-induced carbon emission of 273 Tg C for 485 

September–October is also consistent with an aerosol-based study of Kiely et al. (2019), the best estimate of which is 247 Tg 

C as the sum of CO2 and CO emissions for Equatorial Asia but not including eastern areas (e.g., Papua New Guinea). 
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This study used high-precision in situ observations of CO2 to estimate carbon fluxes in contrast to studies that used 

satellite observations of CO (Huijnen et al., 2016; Yin et al., 2016). Therefore, we obtained the total net carbon flux that 

included biomass burning emission, terrestrial biosphere photosynthesis and respiration, and fossil fuel emission. The 490 

estimated total net carbon flux amounts to 322 Tg C for September–October (CV_GG), 85% of which is contributed by fire 

emissions (Table 3), indicating that flux variations of terrestrial photosynthesis and respiration under severe drought were not 

as large as those of the biomass burning emissions in 2015. This result indicates that biomass burning emission is the main 

driving force of interannual variations of carbon fluxes in Equatorial Asia, which is a unique feature of the carbon flux in this 

region, compared with other tropical regions. Carbon fluxes in the tropics are considered to have significant sensitivities to 495 

climate variations, especially to El Niño, with major driving forces of terrestrial biosphere flux changes in response to 

temperature and precipitation changes (Yang and Wang, 2000; Zeng et al., 2005; Wang et al., 2013). 

As described in Section 2.2, we used the common scaling factor for CO2 and CO fire fluxes; therefore, the ratio of 

the emission factors (CO/CO2) was fixed to that of prior fire-emission data (GFED and GFAS) and burned carbon mass was 

modified by the inverse analysis. It is likely that the spatial pattern of fire-emission ratios was reasonably represented because 500 

the model reproduced the observed variation in the enhancement ratio that might be caused by the difference in their origins 

(Figs. 6 and 13). However, as shown in Fig. 13, the model overestimated the enhancement ratios from September to early 

October, irrespective of its origin (Borneo or Sumatra). Meanwhile, it was not the case for the latter period, although the 

simulated ranges were large, indicating that the temporal change of the fire-emission ratio, i.e., a decrease of combustion 

efficiency, might not be well represented in the fire-emission data. Typical fire-emission ratios of CO/CO2 are 0.2–0.3 mol/mol 505 

for peatlands and 0.1 mol/mol for tropical forests, respectively (Akagi et al., 2011; Huijnen et al. 2016; Stockwell et al., 2016). 

Therefore, the observed smaller enhancement ratio infers that the contribution of fires (or smouldering) in dried peatlands was 

smaller in the early fire period than expected. This might have partially resulted in the smaller-than-prior estimates of the fire-

induced carbon emission (Table 3) because peatlands have high carbon density and are dominant sources of carbon (Page et 

al., 2002). Nevertheless, the uncertainty is high, as demonstrated by the model large spreads, especially for the latter period, 510 

and we need more observations for robust estimations of the fire-emission ratio. 

We noted that the inverse analysis of this study has several limitations. First, we employed only CO2 observations in 

the inverse analysis, which does not allow us to distinguish biomass burnings from other terrestrial fluxes. To separate fire-

induced and other terrestrial fluxes, it would be helpful to incorporate CO observations simultaneously with CO2 observations 

into the inverse analysis; however, the availability of in situ CO observations (Novelli et al., 2003) is limited, especially for 515 

Equatorial Asia. A joint CO2–CO inversion is left for a future study. 

 The second limitation is the dependency of the inverse analysis results on the prior estimate. We found that our inverse 

calculations had a significant sensitivity to prior fire-emission data. The posterior fluxes were similar when GFED or GFAS 

data were used as the prior. However, when the prior fire emissions were excluded (i.e., C_NO), the posterior flux had much 

lower values, indicating that we cannot fully constrain the fluxes with CONTRAIL alone and that prior fire-emission data 520 

should be as accurate as possible. The relatively small sensitivity to the difference between GFED and GFAS was because the 
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original GFED and GFAS data are comparable. Nevertheless, the well-constrained flux at the end of September in Sumatra 

(Fig. 11) tells us that we could obtain a sufficient constraint from CONTRAIL when the time and location of the observations 

coincide with the timing of airflow rich in emission signals. Such an airflow dependency could be reduced by making the 

observations denser in space and time. To this end, the CONTRAIL project continues effort to reduce chances of missing data. 525 

Finally, model transport errors would be the third limitation. Figures 3 and 4 show that even after the inversion, the 

model could not sufficiently reproduce high mole fractions near the surface, suggesting some limitation of the model. 

Compared to the wind data obtained from the CONTRAIL aircraft, the speed and direction of winds over Singapore were well 

simulated in the model (not shown). Therefore, representative errors that include both model transport and fluxes could be one 

cause. A higher resolution model is desirable, and is left for a future study with advanced computational resources. 530 

In this study, we tried a regionally focused inversion using different flux parameter settings for Equatorial Asia and 

the rest of the world (Table 1), which gave a sufficient degree of freedom to fluxes in Equatorial Asia, while strongly 

constraining fluxes to the prior ones in the rest of the world. This inversion approach would be acceptable only when prior 

fluxes can produce comparable spatiotemporal variations of atmospheric CO2 with observations, which was confirmed using 

the previous inversion flux of Niwa et al. (2012). Furthermore, Niwa et al. (2012) found that CONTRAIL data could 535 

independently constrain the fluxes in Equatorial Asia itself, supporting the validity of separating fluxes in Equatorial Asia from 

those in the other regions. Nevertheless, the inversion flux used as the prior in this study was optimised for the different years, 

which introduced a certain level of uncertainty. In future analysis, an effort for reducing uncertainties will be made by 

performing a global inverse analysis by combining ground-based stations and CONTRAIL data. 

5. Conclusions 540 

In this study, an inverse system was developed to estimate high-spatiotemporal resolution fluxes in a focused area and 

incorporate CO as a proxy for combustion sources. We performed the inverse analysis for carbon fluxes in Equatorial Asia 

during the historic El Niño of 2015. 

In contrast to many studies that used aircraft data for evaluating inversion results as independent data (e.g., Chevallier 

et al. 2019), we extensively used the CONTRAIL aircraft data in the inverse analysis and demonstrated that the aircraft data 545 

could constrain flux estimates efficiently. It is essential for Equatorial Asia because there are insufficient ground-based 

observations in the region. Furthermore, the upward airflow, which is typical in the tropics, makes it difficult for remote 

ground-based stations to capture flux signals (Niwa et al., 2012). 

We estimated the fire-induced carbon flux to be 273 Tg C for September–October. This number accounts for 75% of 

the annual fire emission and 45% of the annual net carbon flux in Equatorial Asia, demonstrating that fire emission is a major 550 

driving force of the carbon flux in the region. Although the inversions have a certain degree of sensitivity to prior fire-emission 

data, they coherently estimated smaller amounts than the prescribed biomass burning data. One cause could be that peatland 

fires were not as severe in 2015 as expected, as suggested by the model overestimation of the enhancement ratios ΔCO/ΔCO2 

captured by the NIES VOS observation. Nevertheless, this study is compatible with previous studies because a significantly 
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smaller amount of carbon was released in 2015 than in 1997, of which the El Niño intensity was comparable to that of 2015. 555 

This could be because the intensity of land-use change has decreased in recent decades (Kondo et al., 2018). Another possible 

underlying mechanism is the difference in precipitation patterns and amounts between 2015 and 1997 (Fanin and van der Werf, 

2017). However, further investigation is needed by combining process-based terrestrial biosphere models, biomass burning 

emission models and inverse estimates, as in this study. 

Although it is smaller than 1997, our estimate of the fire-induced emissions in 2015 is still notably high. Field et al. 560 

(2016) pointed out that the fire emissions estimated by GFED for Equatorial Asia in 2015 are higher than the annual fossil fuel 

emissions of Japan. Our estimate is smaller than that of GFED, but still comparable to the latest Japanese inventory (338 TgC 

yr−1 for 2018 (GIO and MOE, 2020)). Using an atmospheric climate model, Shiogama et al. (2020) projected that Equatorial 

Asia would experience stronger droughts than that in 2015 in a future warmer climate condition. To reduce fire-induced carbon 

emissions from such drought events, chances of ignition must be reduced. The continuous monitoring of carbon emissions 565 

with high-precision atmospheric observations is indispensable for mitigation measures against fires. The ongoing activity of 

aircraft- and ship-based observations used in this study will continue to provide practical implications and reliable quantitative 

estimates of carbon emissions from Equatorial Asia along with an inverse analysis. 
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